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The behavior of coupled stochastic fields near a cusp bifurcation is studied. The 
results are applied to a theimochemical model and the possibility of observing 
nonclassical critidal behavior is discussed. 
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1. I N T R O D U C T I O N  

We study the behavior of coupled stochastic fields ~bz(t, r) near a simple 
instability of their evolution equations. The situation is that in which the 
matrix associated with the linearized problem has one simple eigenvalue 
zero, while the others have negative real parts. 

In Section 2, we treat the problem in detail for the case of two fields 
and indicate the generalization to n fields, which is direct. We show how to 
eliminate the "noncritical" fields and reduce the problem to a simple model 
which gives the behavior of the critical field near the instability. This 
problem is nontrivial: it depends on the dimensionality of the system. For 
example, for the simple situation in which only the homogeneous steady 
state becomes marginally stable (cusp bifurcation), the adiabatic 
elimination can only be performed for dimension d~> 3. In this case, we 
recover the Landau-Ginzburg potential for the critical field. For d~< 2, our 
method does not allow to eliminate the noncritical fields. 4 
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In Section 3, we apply these results to the study of a thermochemical 
model, considered previously by van den Broeck, {2) in the absence of 
diffusion (zero-dimensional case). We determine explicitly the coefficients of 
the Landau-Ginzburg potential in terms of the variables of the problem 
(temperature, activation energy, etc.) and we evaluate the width of the non- 
classical critical region by applying the Landau-Ginzburg criterion. 

Finally, we summarize in the Appendix the functional integral for- 
malism for stochastic fields obeying Langevin equationsJ 2) This is done to 
make the paper self-contained and also because we felt that a simple and 
direct presentation of the results we needed here was not readily available 
in the current literature. 

2. A D I A B A T I C  E L I M I N A T I O N  OF T H E  N O N C R I T I C A L  FIELD 

We consider the stochastic fields (~bl(t, r), ~b2(t , r)) in d-dimensional 
space, r = (r~,..., re), obeying the coupled Langevin equations, 

l(t' r) + [ # ' l + F r ' l   2-'I 

In (1), C o is a (2x2)  real matrix of elements L o. depending on a set of 
parameters {#~} and /3 is a diagonal diffusion matrix of elements DiSo.,  
Di > 0, V 2 is the d-dimensional Laplacian V 2 = ~?.~, ~. = ~/&~, Gj are the 
nonlinear terms. 

GJ=-- 2 ~J' z~nz~n UmntF1..F2, j =  1, 2 (2.2) 
m+n>~2 

and fj(t, r) is a Gaussian noise (white in time) with 

{ f j ( t , r ) f M ' , r ) } = b j , ( l + b V 2 ) 6 ~ d ) ( r - r ' ) 6 ( t - t ' )  (2.3) 

Here bit is a constant positive matrix, b a negative constant, and 6~d)(r -- r') 
the d-dimensional &function. 

Let us suppose now that for the values {/i~} of the parameters,/2 o has 
an eigenvalue zero with multiplicity one and a second eigenvalue ( - 2) < 0, 
i.e., we have det s  Tr s  

If A' is the matrix that diagonalizes s one has at this critical 
point 

where ~pi= A~by. For values {#~} of the parameters near the critical point 
{#~}, we denote by ( - 3 )  the smallest eigenvalue of/2 o, i.e., 6=5({ /~})  



A Thermochemical  Instabil i ty 441 

and 6({#~})=0.  Then, to first order in 6, a matrix A " = A ' + O ( 6 )  will 
diagonalize L0, and putting now #J~ = A~.~bj, we have 

o ] 
~'~J -;~'JL~'~J + A"DA" -  Lr G2 f2 

(2.5) 

with 2 ' =  2 + 0(3). We suppose that in the space of parameters there is a 
domain zl in the neighborhood of {fi,} where one has 6 >0.  Taking the 
Fourier transform of (1), we see that the associated linear problem is deter- 
mined by the matrix s = C o - / ) p  2, p2= p~ + ... + paa, and one has 

det Cp = det C 0 - p2(D t L22 + D 2Lu) + p4DID2 (2.6) 

Tr Cp = Tr C 0 - pZ(D 1 + D2) (2.6') 

If we consider the situation where 

D1 L22 + DzL11 < 0 (2.7) 

we see that in the domain d all modes will be stable, since Tr Cp < 0 and 
det Lp > 0. Moreover, when 6 ~ 0 + the only mode with zero eigenvalue 
will be the one with I l l  2 ~---0. Let A ( p 2 ) = A " +  O(p 2) be the matrix that 
diagonalizes s in the domain we are considering; then we obtain from 
(2.1) for the fields ~p;= A,y(V 2) ~bj the following equation: 

~l - -  [~ ~- hi(V2)l 0 l [~ / l l  
0 - [ ; :  + h (va)iJLO J 

+ A(V2) [GG--;] + A(V2) [ ~ ]  

where h i (_p2)  > 0 and 2' + h2(_p2) > 0. 
Putting Gi= A(V2)o �9 Gj, one has 

(2.8) 

with 

Gi E - i  m n = a,,,~pl ~, 2 (2.9) 
r n + n > ~ 2  

a,,,-i = a~,(V2) = a,~,i + O(6) + O(V 2) 

r n  n t t - -  where am.i is the coefficient of ~i 02 in G~= AijG s. The new white noises 
fi  = A(V:)~fy have the following correlation function: 

{Z(t, r)f j ( t ' ,  r')} = blj[1 + b(V2)] 6~d)(r -- r') 6(t -- t') (2.10) 
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where 

bli = b• + 0(6),  b U = A',kA~,[;k,, b(V z) = ~ b,(V2)" 
n ~ > l  

We conclude that the set of equations (2.8) takes the form 

L~2(t, r) 0 - [X' + h2(V=)]JL~02J + G2 f2 

(2.11) 

and we shall study them for 6 ~ 0 +. We note that the original problem of 
Eq. (2.1) in the vicinity of {/2~} corresponds to the loss of stability of the 
homogeneous solution Oi= 0. If we can realize the cusp bifurcation (two 
new real stable solutions appear after crossing the critical point 5 = 0), we 
must have a2~o = 0, i.e., in the equation for the critical field 01 the nonlinear 
term in ~ has a coefficient 0(6),  which means that we are now studying an 
instability of codimension two. 

We can now use the results of the Appendix to write down the 
generating functional of correlation and response functions [see (A36)]: 

Z [ J ,  J* ]  = ~ I I  exp i dt dr H ~ ( ~ ( t ,  r)) 
1(0) -- m 

+ [~ + hl(V:)] 4'1 + r/2(g,2 + DY+ h2(V:)J 4'2) 

I I k  ~ -k  =hmdln - -  amn ";" l ""2 
m+n>~2 

* } (2.12) + kb,,[ 1 + b(V2)] I / # L  + Jk~'~ + Jk Uk 

The perturbation expansion of Z[J ,  J* ]  can be obtained as explained in 
the Appendix. The propagators [see (A40), (A41)] are (21 = 6, 22= )~') 

Ak,(o) ' P ) =  1 b~,[1 + b ( -p2 ) ]  (2.13) 
(2x) d+x {e} + i[2k + hk( --p2)] } {e} -- i[Z, + h,( - p2) ]  } 

1 1 
S~(oJ, p) = -6~ (2x)d+ 1 e} + i[Z~ + hk(--p2)] (2.14) 

and in the calculations the {o integration is to be done first by the residue 
theorem. We are interested in the long-distance behavior when 5 ~ 0 +, i.e., 
in the small p 2  region, and in this limit we only keep the dominant con- 
tribution to (2.12). We can then make the following replacements in (2.13) 
and (2.14): the numerator of (2.13) is replaced by bkt, [2' + h2( _p2)] by )~, 
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and [c] -4- h l ( - p 2 ) ]  by (6+Dp;) .  In the denominators (co_+i,~) we also 
eliminate the co dependence, replacing it by _+ i2, which amounts to sup- 
pressing in (2.12) the term H2~b 2. We can now eliminate the couplings that 
give finite contributions (nondivergent when 6 ~ 0 + ) at each order of the 
perturbation theory. By power counting, we see then that we can replace 
am n-k by am nk and keep only the linear terms in ~2 for dimension d > 2 .  Since 
we are interested in the critical fields ~b 1 and HI,  we put J2 = J* = 0 and we 
do the ~2 integration. This gives a functional g-function, 

I ( ) lm] 6 n2 Z 2 - / /1 O (2.15) - a,. 07 Z aml , 
m )  l rn>~ l 

which allows us to eliminate H 2 by integration 

112 =2-~H,[al~tp~ + (a~ +2-~al~a~) ~ + .--] (2.16) 

The terms b l z H 1 / / 2  and b22(//2) 2 in (2.12) will generate couplings H~OT, 
m ~> 1, which are not relevant (give finite corrections for 6--, 0 + ) for d >  2 
and can be dropped. The final result for the generating functional 
Z[J1, J*] is 

Z[Jl ,J*]=f ,  ~P,~H~expifdtfdr[H~(~P~+(6-DV2)~,l 
~(o) 

+ :bll~ l112-Hl(b20~q.-b3t~3-kb4~14-b ...)+JI~I+J*H1] 
(2.17a) 

with 

bz=a~o, b 3 : a ~ o + 2  lall a210 

b4 = 2 1 [a~, a~o + (a~ + 2-~a~l a~l) a20] (2.17b) 

and so on. 
By power counting, we can see from (2.17a) that the critical behavior 

will be determined by the coupling bmHl~" ~ for the lowest m with non- 
vanishing coefficient bin. The cusp bifurcation appears here as a codimen- 
sion-two instability when b2 =a~o = O(c~) and b3 ~<0. Then the dominant 
term near the critical point 6 = 0  will be b3II~Pl 3 and we have the well- 
known behavior of the r model with stationary probability (3) 

P~t[0~] = exp - ~-~ f dr D(VV/)2 + 6~2 --~- ~9 4 (2.18) 

If the original problem [Eq. (2.8)] has the symmetry ~k~ ~ - ~ ,  the coef- 
ficient b2 vanishes identically and the cusp bifurcation has codimension 
one. 

822/50/'1-2-29 



444 Tirapegui and van den Broeck 

The generalization to n fields is straightforward. Now in (1), 
d~= (~bl, ~b2 ..... ~bn), s is an (n x n) real matrix, and we suppose that at 
{/~}, Lo admits an eigenvalue zero of multiplicity one and n - 1  simple 
eigenvalues 2i with negative real parts. Instead of (2.6) we have 

n - - 1  

det s = det s + ~ (p2)m ~m(Di, LO') + (_p2) ,  D I D 2 . .  " D ,  (2.19) 
m = l  

and condition (2.7) will be replaced by the n -  1 inequlities a m > 0 if n is 
even, am < 0 if n is odd. The rest of the analysis is the same. 

3. A P P L I C A T I O N  TO A T H E R M O C H E M I C A L  I N S T A B I L I T Y  

Let us now apply the results obtained in Section 2 to a thermo- 
chemical instability, which was previously studied by van den Broeck. (2) In 
the latter paper, the system was considered to be perfectly homogeneous. 
However, even in a well-stirred chemical reactor, concentration and 
thermal diffusion have to be taken into account on a length scale 
smaller then the Kolmogorov length, characterizing the size of the smaller 
turbulent eddies. Our model equations are therefore those for the 
homogeneous system, supplemented with thermal and molecular diffusion: 

Otx = - k x  - ot(x - -  X e )  -'[- D l V2x -'[- Fl( t  , r) 

8 t T =  rkx  - fl( T -  Te) + D2 V2T-[ - F2( t, r) 
(3.1) 

where x(t ,  r) and T(t, r) are, respectively, the concentration (in mole/cm 3) 
and temperature at the position r at time t, k (T)=  ko e x p ( -  U/ka T) is the 
time-dependent rate constant of the exothermal chemical reaction 

X k , A + A H  (3.2) 

r is the temperature increase per mole, and D 1 and D 2 a r e  the concen- 
tration and thermal diffusion coefficients respectively. The terms ~ ( x - X e )  
and f l ( T - T e )  represent the decay of the long-wavelength perturbations 
due to the coupling with the externally fixed reference concentration x e and 
temperature Te. The decay of the short-wavelength inhomogeneities is 
described by the molecular and thermal diffusion contributions D1 V2x and 
D2V2T. Such a phenomenological decomposition into long-wavelength 
decay incorporating boundary effects and short-wavelength contributions is 
very analogous to the decomposition of the pressure drop through porous 
media as the sum of a viscous term ( - r /V2u)  and a term - f l u  representing 
in a phenomenological way the effect of the boundaries (Darcy's law). (5) 
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Note that the term - a ( x - x ~ )  can also be thought of as representing a 
linear chemical reaction 

k l  

X .  " B (3.3) 
k2  

with k~ = a and k2b = axe (b is the constant concentration of species B). 
The quantities F 1 and F 2 represent the effect of the noise associated with 
the dissipative processes that take place in the system. As is usual, (6) we 
suppose that they are Gaussian white noise fields with mean value zero and 
correlation (6,7) 

{Fk(t, r) F,(t', r')} =/~kl cS(r- r') cS(t- t') 

0 ~ K~ +2~-~r, Ok3kjb(r--r ')b(t-- t '  ) (3.4) 

The coefficients /)kt are supposed to be constants, and can be roughly 
evaluated by considering the chemical reactor operating under equilibrium 
conditions and applying the fluctuation-dissipation theorem. For instance, 
/~11 can be evaluated by considering the chemical reactions (3.2) and (3.3) 
operating under equilibrium conditions in an isolated reactor. One finds 

b,, = ( I / N A ) ( k  + a)<x> st (3.5) 

The concentration is expressed in mole/cm 3 and NA is the Avogadro 
number. Our control parameters will be the concentration Xe of X in an 
external reservoir supplying X and the external temperature T~. The 
homogeneous stationary state (xst, Tst) is 

axe (3.6) 
Xst  = k(T,) + a 

f(Tst,  ire, xe )=  Tst- T e 
rak( Tst) xe 

/~[k(Ts,) + a] 
= 0  (3.7) 

We shall be interested in the critical stationary state (x~t, T~t), which 
satisfies in addition to (3.6) and (3.7) the conditions 

t c c t/ c f (Tst, T~,Xe~)=0, f (T~t, Tec, XeC)=0 (3.8) 

where primes denote derivatives with respect to Tst , and we have written 
(Xe ~, Te ~) for the values of the external parameters at the critical point. The 
four equations (3.6)-(3.8) determine (Xst, Test, xe,C T~) and we see then that 
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we are in a codimension-two situation. These four equations can be written 
as follows (2) [k~ = k(T~t)]: 

where 

X~t/X~e ~- �89 -- 2) (3.9a) 

T~t/T~ = 7/(7 - 2) (3.9b) 

~/k~ = 7(7 - 4) (3.9c) 

~/k~ = p7/4 (3.9d) 

P = --4-7~, y = kc = ko exp (3.10) 
T e k B T c' k 

Clearly, these equations can only be satisfied for 7>4 .  Let 
xst = x~t + Axst = T~t + A T~t be the stationary state corresponding to the 
values (x c + Axe, T~e + ATe) of the parameters. We choose to approach the 
critical point (X~e, C Te ~) along the line 

ATe 2 Ax e 
- -  + - - - - 0  ( 3 . 1 1 )  

Te ~ 7 - 2  Xe ~ 

in order to realize a cusp bifurcation. Indeed, one has along this line that 
A T~t satisfies the equation (2) 

ATst ~ A ~  1 Ap~-~ t 2 0 
T:] [_---T--~ + g (7 - 2) (---T--~t~t) ] = (3.12) 

Putting 

x ( t , r ) = x ~ t + A x ~ t + 6 x ( t , r ) ,  T ( t , r ) = T g t + A T s t + f T ( t , r )  

we obtain from (1) for fix and 5 T the equation 

[ S x ( t , r ) ]  [ 6 T J  + nonlinear terms + [ ; ; 3  (3.13) c~, I_6T(t, r)J  = (F+DV2)  5x 

where 

V - [k(T~t) + e]  -k ' (Ts t )  xs, ] (3.14) 
F =  k rk(Tst) rk'(T~t) Xst-/~3 

and /5 is the diagonal ma t r ix /3u=  6,jDi. One finds along the bifurcation 
line (3.11) that 

PY(7 -- 2) 2 ATe (3.15) 
d e t F = k ~  4 ( 7 - 4 )  ~e  ~ 
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clearly, det F =  0 at the critical point (x~, T~) and Eq. (3.13) takes the form 

L#=(t, ,)] ~ Jk~b2j + nonlinear terms + [f=] (3.16) 

where 

6x 6 T F1 F2 

O~=W'xst ~ 2 = ~  ' L=kox~,'  L - k c r ~ ,  

and 

2 F - 2 ( 7 - 2 ) / ( 7 - 4 )  - ( 7 - 2 )  ] (3.17) 
0 / 

L p/2 P(7 - 4)/4j  

We place ourselves now on the bifurcation line (3.11), where only one free 
parameter remains, which we choose to be ATe. There is one vanishing 
eigenvalue [-6(ATe)I ,  which vanishes for AT e-.,.O, and a second ( - 2 ' ) ,  
which remains finite in this limit. 

One has [ 2 ' = 2 + 0 ( 6 ) ]  

7 - 2  7 - 4  (3.18) 
2 = 2  7 - ~ - P  4 

fi = 1 p y ( 7 -  2) 2 AT e (3.19) 
2 4(7 - 4) T~ ~ 

and the condition 2 > 0 imposes y < 4p - 1 [(p + 1 ) + (p + 1 )i/2]. The matrix 
A that diagonalizes/2 o is 

1 4(7 - 2)/p(7 - 4)] (3.20) 
A = 2/(7 - 4) 1 

and near the critical point {Te ~} one has for ~ i =  A~0y, A ' =  A + O(c5), 

ak, t 02 = 0 -2'JLO=j+A'~ ~,2 
[ v / (7-4)  A (3.21) 

where 

p 3 ( 7  - -  2 )  3 
3 2 (3.22) Z =  9623 01+a2oOl+allOlO2+ao24J~+ ... 
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with a20 = O(6), since we are in a cusp bifurcation. In the notation of 
Section 2 one has 

p37(y - 2)3 t- 0(6) (3.23a) 
a~~ = 9623(7 - 4) 

a~o = P3(7 - 2)2 ( ; ~ 6 - ~ 5  y -42) + 0 ( 6 )  (3.23b) 

Condition (2.7) is here 

D 2 - D 1 P(Y - 4)2 > 0 (3.24) 
8 (~ -2 )  

and it guarantees that for 6 > 0  all modes will be stable. If (3.24) is 
violated, i.e., if D1L22 + D2LI, = a becomes positive, then we see from (2.6) 
that at 6 = 0 all the modes with p2 between zero and 

a pk~(y-4)  I 1 8(y-2)D2] 
D,D2 = 4D2 ~-~-~-2 ~ > 0  (3.25) 

become unstable and we cannot apply the results of Section 2. If (3.24) 
holds, then we conclude that the behavior of the critical field ~1 will be 
determined by a reduced model with generating functional Z[J1, J* ] given 
by (2.17). The parameter 6 is defined in (3.19). For the other parameters D, 
b3, and bn one obtains 

( / )  1) _ 1 2 ( 7 - 2 )  I P(Y-4)  2] 
D= A ~ A -  ;c ~-~--_ 4 ) 8(-(7~- 2) J 11- D 2 - D  1 > 0  (3.26) 

2 p3y(7-2)3(7-4)  2 
b3= 3 [8 (y -  2 ) -  p (7 -4 )2 ]  3>0  (3.27) 

hi1 2 
bn ~ ~  ~ N----~et (3.28) 

The reduced model corresponds to a Langevin equation 

0,01 = (--6 +DV 2) 01 +b3O 3 +fl( t, r) (3.29) 

with 

{fl(t, r)fl(t',  r')} =bxl 6(kc(t-  t')) 6~d~(r- r ') 
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The Fokker-Planck equation corresponding to (3.22) is 

O-~ p[~bl, tl...] 

= f d l ' ~  [01(r)5+DV2~//l(r)-b301(r) 2] 

511 ~ t  + 2 6 p[Ol,t l . . .]  (3.30) 

The stationary probability Pst[l~a] corresponding to (3.30) reads 

Pst[~bl]~..exp(-fdr flV6I.~ L~ll ff]l 2 "{-D (VI/11)21-.l-b11 4!bl lb3 @14})(3.31) 

4. T H E  G I N Z B U R G  C R I T E R I O N  

In order to estimate the range of validity of a mean-field type of 
approximation, we use the Ginzburg criterion. (4) In terms of the 
parameters 5, D, b3, and b11, the condition for observing nonclassical 
critical behavior reads 

3bll Ib31 ~d/2 F(e/2)/a\[,.. a/2-2 > 1 (4.1) 
D 2 E \D} 

where d is the dimension, d = 4 -  e. Combining this result with the explicit 
expressions (3.13 ) and (3.26)-(3.28), one obtains the following delimitation 
of the region characterized by nonclassical critical behavior: 

3To pST(7-2)(7-4)4 [(_~)3/2 1 12 
- ~  < [ 8 ( 7 _ 2 ) _ p ( 7 _  4)2j2 NAX~t (4.2) 

with 

p ( 7 - 4 )  2 K=D2-D1 - - > 0  (4.3) 
8(~-2) 

As expected, the vicinity of the critical point where nonclassical critical 
behavior will be observed becomes smaller as the "noncritical" correlation 
length 

Ic = (K/kc) m (4.4) 
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becomes larger. The difficulty of observing nonclassical critical behavior in 
nonequilibrium transitions has been associated with the fact that this 
length is typically much larger in the case of nonequilibrium, systems. 
However, in the case of chemical nonequilibrium instabilities, it was argued 
that the large variability of the chemical rate constants makes these systems 
the best candidate for the observation of nonequilibrium nonclassical 
indices. ~ This same remark seems to apply to the presently discussed ther- 
mochemical instability: for a large value of kr the correlation length lr may 
become comparable to atomic distances and nonclassical critical behavior 
is expected. 

In addition, the result (4.2) suggests that one can markedly broaden 
the nonclassical critical region by considering reactions with a large specific 
heat of reaction, thereby increasing the value of p. Both these arguments, 
however, present serious drawbacks. First, it follows from the result (4.9d) 
that/3 > pkc (since ~ > 4). Hence, a large value of k~ and/or of P implies a 
large value of/3, which seems physically unattainable. Indeed, we have not 
been able to construct a simple internal temperature control device similar 
to the reaction scheme (4.3) for the concentration control. The parameter fl 
thus cannot be associated with a chemical rate, but it represents a much 
slower rate describing the decay of the long-wavelength temperature 
inhomogeneities through thermal coupling with the boundaries, which are 
kept at a constant temperature. Second, the region in which a cusp bifur- 
cation occurs without the interference of other instabilities becomes very 
narrow as the value of p increases { 4 < 7 < 4 p  l i p +  1 + ( p +  1)1/2]}, so 
that it seems very difficult to exploit the p5 dependence in order to promote 
nonclassical critical behavior. 

5. C O N C L U S I O N  

We have investigated the critical behavior in the vicinity of a non- 
equilibrium thermochemical instability for the simple case of a cusp bifur- 
cation in a crude model [Eqs. (3.1)] of a linear exothermal reaction. The 
width of the nonclassical critical region is found to be proportional to the 
sixth power of the chemical reaction rate kc and to the fifth power of the 
heat of reaction. Although large values of these parameters are possible, 
one cannot exploit this feature to propose a thermochemical experiment in 
which nonclassical critical behavior could be observed. First, for large 
values of kc and p the critical point lies in a region of parameter space that 
is unattainable for practical purposes (e.g., large values of the temperature 
coupling constant /3). Second, for these values of kc and p, other 
instabilities (such as a transition to a limit cycle behavior) will interfere 
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with the cusp bifurcation. It remains to be seen whether these difficulties 
are inherent to the specific model discussed in this paper and can be sur- 
mounted in the case of more complex thermochemical systems. 

APPENDIX  

For simplicity, we explain the method in the case of one degree of 
freedom (for more details, see Ref. 3). Let q(t) be the continuous Markov 
process, obeying the following Langevin equation: 

(t(t) + A(q(t)) = f ( t )  (A1) 

where f(t) is a Gaussian white process with 

{f(t)} = 0, {f(t)f(t ')} =c6( t - t ' )  (a2) 

The bracket {. } stands for the average over the different realizations o f f  
The solution qf(t) of (A1) is a functional of f ( t ) .  Let us discretize the 

interval [-to, T] in N +  1 intervals of length ~, t j=  to+j~, j=0, . . . ,  N +  1, 
tN+l:T. 

Setting qj = q(tj) and 

'f,i fJ = 7 f ( t )  dt 
-1  

[to be more rigorous, one should replace efj by dwj = w j -  wj_ 1, where w(t) 
is the Wiener process(3~], one finds for the discretized version of (A1) 

q f - q f  1 ~-A(qf_~)=fj, I ~ < j ~ < N + I  (A3) 

This set of equations give us recursively qjY in terms of qf_~. We will take 
the intial condition qoY= Qo. Note that the ~ ,  j =  1,..., N +  1, are indepen- 
dent Gaussian random variables with joint probability distribution W 
given by (< W(f"f2 '""fu+l)= j=~ \ ~ c J  e x p -  2c} (A4) 

Let F[qS(t)] be a functional of qf(t), hence off ( t ) .  Its discretized form 
is a function F(qoY,..., qYu+~)" The values q{ are determined by (A3); hence, 
one can write 

P(qYo ..... q~+ ~ ) 
N + I  N + I  

= f I~ dqi 1-] 6(qj-qj-l+gA(qj-1)-efJ)6(qo-Qo) 
i = 0  j = l  

+F(qo ..... qN+~) (A5) 



452 Tirapegui and van den Broeek 

We remark that the Jacobian [det (ctqjcqqk)[ that should appear in (A5) is 
one, since we have discretized A(q(t)) as A(qj_l), i.e., in the prepoint. 
Using 6(x)= (1/2zt)S dp e ipx, we can write (A5) as 

f~l~ 1 NI~I f N+I dq, f dPJexpi e.A(qj_l))-gfj]} 
,=o j : a  ~~ Vj~l [P/(qj -qj - l+ 

x 5(q o -  Qo) F(qo ..... qN+l) (A6) 

where we have used 6(x) = (1/2re) ~ dp e ipx. 
From (A5) and (A6) we can write symbolically in the limit N ~  

F[qqt)] = ~q ~p exp i dtp(t)[ 0 + A(q(t)) - f ( t ) ]  
~(o) o 

• 5(q(to)- Qo) F[q(t)] (A7) 

The functional integral in (A7) is defined as the limit for N ~  ~ of the 
discretized form (A6). Note that the discretized form of p(t)A(q(t)) is 
&A(qj 1) and we call this the prepoint discretizaton, indicated by the 
symbol yl(0). (3) 

The next step is to evaluate the average of a functional of f over the 
different realizations. This can be very easily done using the discretized 
form (A6) for a functional and the simple Gaussian law (A4) for the 
random variables fj. Using 

1 ;exp /kx, exp( exp( ' 2 2' ~k  a ) (A8) 

one obtains 

{F(qf,..., q f+  ~)} 

N+I NI~I 
=fl-laq, f dpj ~=o j=~ 2to 

xexp i  ~ pj(qj-qj_l +eA(qj_~))- 
-j=l 

X a(q O-  00) F(qo,'", qN+l) (A9) 

The result (A9) gives us in principle the solution to our problem. 
Unfortunately, in general the integrals cannot be performed, due to the 
nonlinearities in A(qj) and due to the presence of F, and we have to use a 
perturbative approach. 
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We write A(qj)= 2qj + A(qj), where _g(qj) is nonlinear in q~. Further- 
more, the problematic terms can be taken out of the integral in (A9) using 
the standard trick 

f f(q) g(q) dq = f f(q) g(q) e isq @JJ=o 

= f ( ~ j )  f g(q)eiJqdqlj=o (A10) 

One has to perform this trick on both the pj and qj variables. We thus 
obtain 

{F(qof,..., qf+ ,)} 

_(lo lO) 
= F 

x exp/e  -~--~, ~ Zo(J, J*) (All)  
j = l  J = J * = O  

with 
Zo(J, J*) 

N+ 1 NI~I 
= f ~ I d q ~ f  @i 

i=o j=l 2n 

xexp i  pj(qj--qj_l +e2qj_l)+--f p ) +eJjqj+~J*pj 
j = l  

x [exp(ieJoqo) ] 6(qo- Qo) (A12) 

Zo involves Gaussian integrals only, and can be computed exactly: 

Zo(J , J*)=exp  iQo dt' [ e x p 2 ( t o - f ) ]  J(t') 
o 

1 , 
- ! [d t '  f f  dt"J(t')I~A(t,t")J(t") 

+ S(t'-t")J*(t")]~ (A13) 
33 

with 

S(t) = iD(t); D(t) = O(t) e -~' 

A(t', t") c {D(t'--t")+D(t"-t ')-exp[--2(t '+t"-2to)]} 
(A14) 
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In this way, the calculation of averages is reduced to the calculation of 
functional derivatives (or partial derivatives in the discrete form) of the 
generating functional Z0. We can interpret this functional as the charac- 
teristic functional for the linear Langevin equation: 

O(t) + 2q(t) + J*(t) = / ( t )  (A15) 

From now on, we shall use the more compact path integral formulation, 
whose meaning is made precise by specifying the prepoint discretization 
rule 71(0). 

It is thus clear that the quantity J*(t) can be interpreted as a time- 
dependent external field. Note also that 

Z[J(t), J*(t)] 

= lira expf,;dt  6 (16-~(t)) 
~o+ ,~J*(t + ~) ~ 7 

Zo[J(t), J*(t)] (A16) 

is the characteristic functional for the corresponding nonlinear Langevin 
equation [with )~q(t) replaced by A(q(t))=2q(t)+A(q(t))]. The e ~ 0  + 
comes from the yl(0) discretization and is necessary to define in an unam- 
biguous way the action of the functional derivatives on Zo[J, J* ]. As is 
well known, the characteristic functional is also a moment-generating 
function; e.g., 

{q(tl) ... q(t~) p(t'l).., p(t ' )}  

1 6"+mz[J(t), J*(t)] s=J. (A17) 
= i m + ~ 6 J ( t l ) ' ~ ~ ~ - f J * ( t ' m )  ~o 

For example, we obtain in the case of a linear Langevin equation 

6]2 J =  
{q(tl) q(t2)}L = ~J(tl) 6J(t2) Zo[J(t), J*(t)] s*~-o 

=Qo2exp[-2( t~+tz -2 to)]+A( t~ , t2)  (A18) 

a result that can be obtained straightforwardly from the Langevin equation 
itself. 

Often, one is interested in the long-time results only. This can be 
achieved by letting the initial time to go to - ~ .  Since T> to is arbitrary, 
we put T= + ~ .  In many cases, the system will reach a stationary state 
characterized by properties independent of the initial condition Qo. In this 
case, the generating functional takes the following stationary state form ZSt: 

ZSt[J(t), J*(/)] 

= exp f dt A Z~t[j(t),J*(t)] (A19) 
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Z~t[j(t), J*(t)]  

{;;2 = exp - dt' dt" 

• -~2 J ( t ' ) tD( t ' -  t") + O( t " -  t ')] J(t") + iJ(t') O(t - t") J*(t")} 

(a20) 

We make here some remarks concerning our use of the prepoint dis- 
cretization y~(0). Indeed, any discretization can be used and the final result 
will be the same, as is shown in detail in Ref. 8 (see also Chapter IV of 
Ref. 3). For instance, if we use the 7l(a) discretization, which discretiezs 
A(q) as A(qj l+~(q~-qj_l) ) ,  the Jacobian involved in formula (A5), 
which was unity in the yl(0), case is now 

e x p ~ a ~  OA frro OA(q(t)) s ~ ~ exp a dt Oq 

This changes then in formula (A.7) the argument of the exponential to 
P((t-  A ( q ) -  ia OA/Oq), but at the same time we must change the prescrip- 
tion (A.16) to 

QA(q(t)) 
lim i | dt p(t + e) A(q ( t  + e) + ~(q(t  + ~) - q(t))  - 

~ o +  :to (?q 

with 

1 fi 1 6 
p ( t )  --, q ( t )  - - , - -  

i •J*(t)' i 6J(t) 

and Zo[J, J*] remains the same. Then all the 7 dependence cancels in the 
perturbation expansion, which is the same as the 7~(0) one. Let us also 
note that one should treat the white noise f ( t )  as the derivative of the 
Wiener process w(t), which amounts to replacing f j  by (ws-wj_~)/e in 
(A3). This point is discussed carefully in Chapter VII of Ref. 3, where the 
equivalence of discretizations is also shown. 

It is straightforward to generalize the previous results to the case of a 
set of coupled Langevin equations: 

Or(t) + AU(q(t) ) = f"( t )  (A21) 
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with 
{fu(t)} =0;  { f " ( t )  F ( t ' )  } = c~Vb(t - t') (A22) 

One has 

and 

with 

 tTE Z [ J ,  J* ]  = ~q  ~p  exp i dt p~(OU+A~(q)) 
1(o) o 

+-~ c"~"P~ Pv + J .q~ + J*"P~ 6(q( to)-  Qo) 

ftr Pu A (q) p#=(1/i) 6/6J*" =exp  i dt - "  Zo[J,  J* ]  

Zo[J,  J* ]  = exp i Q~ d texp[)~(~) ( to - t ' ) ] . Ju( t '  ) 
/ z = l  0 

- -  d t '  J ~ ( t ' )  
u , v  ~ 1 o 

1 , " u ' _  j * ~ ( t " ) ~  • [ ~ A ~ ( t ,  t")Jv( t  ) + S v ( t  t")]  

(A23) 

(A24) 

S~(t) = i O~D(~)(t), D (u)( t ) =- O( t ) e x p ( -  2<.)t) 

and 

C # v  

A~V(t ', t") = {D(~(t '  - t") + D(~)(t" - t') 

- e x p [ - ( 2 r  } (A25) 

The above techniques become particularly interesting in the case of an 
infinite set of variables, i.e., in the case of stochastic fields 

~b(t, r) = (~bl(t, r) ..... ~b,~(t, r)) 

in d-dimensional space r = ( r l  . . . . .  rd) (we use the notations Ou=-O/Or~, 
V2-----~ 0u~u), All one has to do is to replace the index p in q"(t) by the pair 
of indices (l, r), where l is discrete, l = 1, 2 ..... m, and r is continuous. The 
Langevin equations (A21) are now 

q~t(t, r) + A,((~(t, r), O~b(t, r)) = ft(t, r) (A26) 
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with {ft(t, r)} = 0  and 

{fk(t, r) ft(t ' ,  r ')} = ck,(V 2) 5r - r') g(t -- t') 

where ck~(V 2) is a matrix, which can depend on V 2 acting on the d-dimen- 
sional g-function g<a)(r-r ') .  

Since # ~ (/, r), a sum over # will be replaced a s  ~-~m ~ ~"li dr and 
from (A28) we obtain 

ZEJ, J * ]  = ;~,(o)~(I) ~ l l k  

• f~_ dt f dr {II~(t,r)[.(bk(t,r) 

1 2 + A~(~)] + ~c~,(V )//~(t, r ) /L(t ,  r) 

"t + JJ)k + J~Hk (A27) 

where we have replaced J.(t)~Jt(t, r), J*~(t)--*J~(t, r), and p.( t )~ 
H~(t, r). In the discrete version of (A28) the measure is now 

We put 

~dp = I-[ [I dr r), ~ I I  = l - I . .  2re 
j l,r j l,r 

Ak(~(t, r)) = , l~(V 2) Ck(t, r) + A~(~) 

x =  (t, r), dx=dtdr 

The perturbation expansion for Z [ J ,  J * ]  is 

Z [ J , J * ] =  lira expi fdxlIk( t+e,r)  
~ 0  + 

X ~Z~k(q~l(X)) , = (1/i) 6/SJ(x) Z o  [ ' J ,  J *  ] 
i i  = (1/i) 5/gd*(x) 

with Zo given by [see (A24)] 

ZoI-J, J* ]  = e x p -  ~ I dx' dx" Jk (x ' ) [~  3k'(x ' - x " ) J , ( x " )  
k , l=  1 

+ S~(x' - x") J~*(x")] 
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It is convenient to set up the expansion in terms of the Fourier transforms 
Akt(~, p), S~(og, p) of the propagators, 

F(x) = f dp[exp(-ip" x)] F(p) 

p = (~o, p) ,  

which are [see (A25)] 

p-x  = o ~ t - p . r )  

1 1 
S~(~o, p)= 6~ (21t)u + '~o + i~l~)'- P 2 " z  t ) (A28) 

1 ckt(-p2) 
A kt(~ P) = (2re) a+ ~ [ m +  i2~k)( _ p 2 ) ]  [o~ - i2(t)( - p2)]  (A29) 
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